regular

In graph theory, a regular graph is a graph where each vertex has the same number of neighbors; i.e. every vertex has the same degree or valency. A regular directed graph must also satisfy the stronger condition that the indegree and outdegree of each vertex are equal to each other. A regular graph with vertices of degree



k


{\displaystyle k}
is called a



k


{\displaystyle k}
‑regular graph or regular graph of degree



k


{\displaystyle k}
. Also, from the handshaking lemma, a regular graph contains an even number of vertices with odd degree.
Regular graphs of degree at most 2 are easy to classify: a 0-regular graph consists of disconnected vertices, a 1-regular graph consists of disconnected edges, and a 2-regular graph consists of a disjoint union of cycles and infinite chains.
A 3-regular graph is known as a cubic graph.
A strongly regular graph is a regular graph where every adjacent pair of vertices has the same number l of neighbors in common, and every non-adjacent pair of vertices has the same number n of neighbors in common. The smallest graphs that are regular but not strongly regular are the cycle graph and the circulant graph on 6 vertices.
The complete graph




K

m




{\displaystyle K_{m}}
is strongly regular for any



m


{\displaystyle m}
.
A theorem by Nash-Williams says that every



k


{\displaystyle k}
‑regular graph on 2k + 1 vertices has a Hamiltonian cycle.

View More On Wikipedia.org
Top


Are you 18 or older?

This website requires you to be 18 years of age or older. Please verify your age to view the content, or click Exit to leave.